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Abstract 

A numerical simulation of a receptivity experiment by Kendall (1987) was per- 
formed, solving the 2-D, incompressible Navier-Stokes equations for a flat plate 
boundary layer. Emphasis was placed on the investigation of the mechanism that 
lead to the shift of energy from low frequencies to higher frequencies and to the dif- 
ferent output/input ratios for different cylinder diameters in the experiment. The 
rotating cylinders that were used in the experiment to generate disturbances in the 
freestream were modeled by a numerical forcing function at the freestream bound- 
ary. It was found that the low frequency components of the induced disturbances, 
together with the steady flow, form a new, transient "baseflow" for disturbances 
with higher frequencies. It was demonstrated how the changing receptivity and 
stability characteristics of this "baseflow" lead to distinct peaks in the wavepackets 
that are generated by the freestream disturbance. Further investigation showed 
that the different output/input ratios can essentially be explained by the different 
amplitudes of the lowest frequencies in the forcing. Finally, a numerical experiment 
was performed with only two frequency components present in the forcing function. 
The validity of the proposed mechanism was confirmed by comparison of the results 
of this numerical experiment with those calculated from linear stability theory for 
the transient "baseflow". 
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Problem Statement and Overview 

The subject of this research was a numerical simulation of an experiment carried 
out by Kendall (1987). In a low speed windtunnel, he studied the receptivity of a 
fiat-plate boundary layer to an unsteady, traveling pressure field. The experiment 
provided some insight into the receptivity mechanism, but several open questions 
remained. Therefore it was hoped that a computer simulation would lead to a more 
detailed explanation of the specific receptivity path. Since the experimental data 
available were not sufficient to perform a quantitatively exact simulation, the main 
purpose of this work was to gain a deeper insight into the physical processes involved 
and to reach a qualitative understanding. 

Chapter 1 of this report is a short introduction to the field of receptivity. In 
chapter 2, a summary of Kendall's experiment is given, covering the experimental 
setup and the principal results. Chapter 3 contains the Navier-Stokes equations 
that- describe the physical problem, and their transformation to a more computer 
oriented form, the vorticity transport equation. The initial and boundary conditions 
chosen for the simulation are given in chapter 4. Since the numerical method was 
already described in great detail by others, it will be treated briefly in chapter 5. 

The results of the simulation are discussed in chapter 6: The numerical model 
for the forcing is explained, and the data of the boundary layer response are analyzed 
and compared with those obtained in the experiment by Kendall. This analysis leads 
to a model of the receptivity mechanism which is presented in chapter 7. 

In chapter 8, the concept of this mechanism is tested in two numerical experi- 
ments, and it is found to be valid. 

Conclusions based on the results of chapters 7 and 8 are presented in chapter 9. 



1.       Introduction 

The laminar-turbulent transition in a boundary layer is in many cases initiated 
by a process which is now generally referred to as receptivity: This term denotes 
the various mechanisms by which disturbances in a boundary layer are forced by 
external perturbations such as surface roughness, sound, freestream turbulence, or 
unsteady pressure gradients. 

For years receptivity was investigated mostly through experiments, and there 
were very few theoretical or numerical approaches. By now several theoretical mod- 
els have led to an explanation for some important receptivity paths, although they 
are still widely disputed in the transition community. Recent overviews and sum- 
maries of receptivity experiments and theories are given by Nishioka and Morkovin 
(1986), Morkovin (1988) and Kerschen (1989). 

In general, receptivity can affect transition in a boundary layer in two ways: 
I. The external perturbations create (small) disturbances inside the boundary 

layer. These are then amplified by instability mechanisms that depend only 
on the boundary layer flow itself and not on the external perturbations. In 
particular, the amplification of those disturbances is in the first stage accurately 
described by the classical linear stability theory. However, because the linear 
stability theory leads to an eigenvalue problem (the Orr-Sommerfeld equation), 
it can only predict the amplification rates of the disturbance waves, but not their 
absolute amplitudes. It is the receptivity process that provides the coupling 
between the magnitude of the external perturbations and the amplitudes of the 
Tollmien-Schlichting waves (the eigenfunctions of the Orr-Sommerfeld equation) 
in the boundary layer. 

II. The external perturbations change the growth of disturbances already present 
in a boundary layer. In this case, the linear stability theory must at least be 
modified, or it may not be valid at all. 

Sometimes there is a combination of both effects. In particular, if the external 
disturbances are very strong, receptivity can lead to immediate transition, bypassing 
the usual sequence of instability, amplification and breakdown. 

The subject of the present work is the receptivity of a laminar boundary layer 
to unsteady pressure gradients. These are essentially inviscid fluctuations of the 
mean flow outside the boundary layer. Such fluctuations are always present in 
windtunnels, generated by fans and grids, or by turbulent boundary layers at the 
tunnel walls. In aircraft, they are generated by propellers or rotors, or by vibrations 
of the engine nacelles. 

Unsteady pressure gradients can cover a wide range of phase speeds and fre- 
quencies. They are called spatially localized if the forcing is extended over very few 
wavelengths only (such as sound a from loudspeaker mounted close to a plate in a 
windtunnel). They are called global if the forcing is extended over a larger region 
(such as fluctuations produced by the windtunnel fan). 

If the amplitudes of the pressure fluctuations are not too high, there must be a 
match of both temporal scales (i.e. frequency) and spatial scales (i.e. wavelength) 



to produce positive receptivity.   Here one can distinguish between two classes of 
receptivity: 

A: A close match of phase speed between forcing disturbance and TS-waves 

For a given frequency, this implies that the wavelengths of the forcing distur- 
bance and of the eigenfunctions (the TS-waves) are the same, or are at least very 
close: \FS ~ ^TS- This induces a resonance-like response of the boundary layer. In 
the theoretical model, the eigenvalue problem of the linear stability theory with ho- 
mogeneous boundary conditions is replaced by a boundary value problem where the 
disturbance amplitude is enforced at the freestream boundary. Due to the match of 
wavelengths, this receptivity process works both with local and global excitations. 

B: Different phase speeds of forcing disturbance and TS-waves 

In this case, the wavelengths do not match, and either Xps <C XTS or, most 
often, Xps >> XTS- A global forcing with a given frequency could still create 
disturbances inside the boundary layer, but the phases of those disturbances would 
cancel over one wavelength. In a boundary layer with slow streamwise variation 
of the mean flow (parallel flow assumption of linear stability theory), this amounts 
to a mere superposition of external perturbation and boundary layer flow, without 
any major interactions. An example for this case is sound excitation of a flow with 
very low Mach number. 

Things are different, however, if the spatial extension of the forcing is not 
global but local (over very few wavelengths only). Here the necessary match of spa- 
tial scales is brought in by the length scale of the effective forcing region, through 
the forcing amplitude A(x). Receptivity to disturbances with non-matching wave- 
lengths is also possible in regions with rapid streamwise variations of the bound- 
ary layer flow, such as near the leading edge, near steps, or near slots for suc- 
tion/blowing: In this case there can be a match of spatial scales through a charac- 
teristic length L of the boundary layer change in x. Additionally, a rapid streamwise 
variation of the mean flow always means important nonlinearities in the governing 
equations, which can drastically enhance receptivity. This can possibly lead to a 
breakdown of long wavelengths of sound to the short wavelengths of TS-waves, a 
theory which is still disputed. 

In the receptivity problem examined in this work, there is a close match of 
phase speed between the forcing and the TS-waves. One can therefore expect that 
the boundary layer response will be dominantly of a resonance type. 



2.      Summary of Kendall's Experiment 

2.1. Experimental Setup 

Kendall performed the experiment described here to study the mechanisms by 
which a traveling pressure field in the freestream excites TS waves in a boundary 
layer. He installed a rotor-like assembly in a low-speed windtunnel close to a flat 
plate, as illustrated in Fig.l (Kendall (1987), Fig. 2). The rotor consisted of two 
rods (thin cylinders) mounted parallel to each other on opposite ends of two rotating 
arms, with the axis of the rotation being parallel to the plate and normal to the flow. 
The closest approach of the rods to the plate was several times the local boundary 
layer thickness. Thus the boundary layer sensed only the irrotational disturbance 
field due to the relative movement of the cylinders and did not sense the influence 
of their viscous wakes. 

This setup produced periodic pressure fluctuations in the freestream just out- 
side the boundary layer, traveling at about the circumferential speed Uc of the rods. 
These pressure fluctuations excited wave packet-like disturbances inside the bound- 
ary layer. The circumferential velocity of the rods could be varied over a certain 
range, and it turned out that a ratio Uc/Uoo of around 1/3 produced the strongest 
response in the boundary layer. That velocity was close to the phase speed of the 
most unstable TS waves for the local Reynolds number. 

The nature of the forcing-field was determined by hot-wire measurements out- 
side the boundary layer. Hot-wire measurements were also made inside the bound- 
ary layer to determine the response to the forcing. The obtained data were then 
Fourier transformed to analyze the frequency composition of both the forcing and 
the response: Any component of the Fourier transform will be referred to as 'mode 
n', indicating that its frequency Fn is n x F\ . The fundamental frequency F\ 
was twice the circular frequency of the rotor, because each of the two rods induced 
identical disturbances. Kendall reported data for modes 1 to 12; and amplified TS 
waves are expected within the range of modes 6 to 12, depending on the distance 
from the leading edge. 

2.2. Experimental Results 

The forcing region extends over 15 to 20 cm for the higher modes and over a 
larger domain for the lower modes, demonstrated through the amplitudes plotted 
in Fig.4 (Kendall (1987), Fig. 8a). 

The streamwise development of the induced disturbance signal is plotted in 
Fig.ll (Kendall (1987), Fig. 11). These curves demonstrate the wave packet-like 
nature of the disturbances. The evolution of rather sharp peaks downstream of 
the rotor indicates a shift of energy from low frequencies to higher frequencies. 
Kendall did not further investigate the mechanism of this energy transfer and gave 
no interpretation of it. 

The amplitudes of the boundary layer response, measured at the vertical lo- 
cation of the strongest fluctuation, are shown in Fig.13 (Kendall (1987), Fig. 13). 
Upstream of the rotor station, all modes are strongly amplified.   Downstream of 



I 
i the rotor, the lowest modes (1 - 4) start to decay, whereas the higher modes (the 

unstable TS-components) keep growing. The amplitudes of the highest modes (11, 
12) exhibit strong growth downstream of the rotor station until they reach a local 
maximum. After this maximum they decay over a short distance, but start to grow 
again at the end of the observed region. The reason for this amplitude growth is 
not quite clear from the experimental data. 

To evaluate the efficiency of the forcing mechanism, Kendall divided the am- 
plitudes of the boundary layer response at a downstream location (~ output) by 
the forcing amplitudes (~ input). The (output/input) ratios for two different rod 
diameters are plotted in Fig.30 (Kendall (1987), Fig. 15). The greater "efficiency" 
of the larger rods for the higher frequencies is evident: With the bigger rods, the 
higher modes are amplified more strongly, and the maximum of the (output/input) 
ratio is shifted to a higher frequency. There is no straightforward explanation for 
this difference. 

To gain insight into the receptivity processes just discussed, numerical simu- 
lations of this experiment were performed. In particular, from the simulations we 
hoped to find answers to the following questions: 

1.) What is the mechanism by which the disturbances induced by the rods are 
transformed into TS waves inside the boundary layer? 

2.) Can the shift of energy from lower frequencies to higher frequencies be explained 
by linear stability theory? If not, what other mechanisms contribute to it? 

3.) What is the reason for the different (output/input) ratios obtained with the two 
different rod diameters? 
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3.       Governing Equations 

The numerical simulation was carried out under the assumption that com- 
pressibility and 3-D effects could be neglected. Thus, the governing equations to 
be solved were the incompressible, 2-D Navier Stokes equations. In their basic, 
primitive variable form they consist of the two momentum equations (1.1) and of 
the continuity equation (1.2). 

du       „du       „du            1 dp          (d2ü       d2ü\ . 

-&i + um + vdt=: ~~ßdi + 1/{d^ + w) (Lla) 

dv       „ dv        „ dv 1 dp (d2v        d2v\ 

~d! + udl + vdt = --pd^ + v\W2+W) (Llb) 

dÜ  + §  = 0 (1.2) 

where: 

dx        dy 

i : time u : streamwise velocity 

x : streamwise coordinate v : normal velocity 

y : normal coordinate p : pressure 

v : dynamic viscosity ß : density 

Equations (1.1) and (1.2) are in dimensional form. Nondimensionalization of 
the basic variables allows for a more efficient computation. To account for the 
boundary layer characteristics of the flow, the normal coordinate y and the normal 
velocity v are stretched by the factor yRe. 

The nondimensionalized variables are: 

Re = ^ X L L (1-3) 

where: 

u =  v = v -rte p = 
Uoo doc P       ßUl 

Uoo : freestream velocity 

L : a characteristic length 
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Thus the basic equations in nondimensional form are: 

du du du 
dt dx dy 

dv dv dv 
dt dx dy 

dp 1   d2u       d2u 
—- + +   
dx       Re dx2       dy2 

dp 

dy 

1   d2v       d2v 
+ 

Re dx2 
dy' 

du       dv  _ 
dx       dy 

(1.4 a) 

(1.4 b) 

(1.5) 

Differentiating eqns.(1.4) with respect to x and y, subtracting (1.4b) from (1.4a) 
and introducing the vorticity u 

du 1   dv 

where: 

U 

U 

dy       Re dx 

uL 

UcoVRe 

yields the vorticity transport equation: 

du du du   _    1   d2u       d2u 
dt dx dy        Re dx2       dy2 

(1.6) 

(1.7) 

(1.8) 

Differentiating eq.(1.6) with respect to x and y, and using eq.(1.5) leads to two 
Poisson equations for u and v. 

du 1   d2v       d2v 
+ 

dx       Re dx2       dy2 

du 1   d2 

+ d2u 
dy        Re dx2       dy2 

(1.9 a) 

(1.9 b) 

Alternatively, u can be calculated from v, using eq.(1.5) and differentiating with 
respect to x: 

d2u _      d2v . 
dx2 dxdy 

This formulation is better suited for a numerical method. 
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4. Integration Domain,  Initial and Boundary 
Conditions 

4.1. Integration Domain 

For the numerical simulation, a rectangular domain was cut out of the entire 
physical flow field. It is in this domain where the essential process of receptivity 
takes place. In the computation it is represented by a rectangular (M x N) grid 
(Fig.2). 

The boundaries are: 

Inflow Boundary A-D 

n = 1;     m = l,...,M;     x = xo 

Surface of the Plate A-B 

n = l,...,JV;     m = 1;     y = 0 

Outflow Boundary B-C 

n = N;     m = l,...,M;     x = xe 

Freestream Boundary D-C 

n = l,...,N;     m = M;     y = Y 

4.2. Initial Conditions 
The vorticity transport equation is of parabolic type with respect to t, therefore 

initial conditions must be prescribed in the whole integration domain. 

u(x,y,Q) = uQ(x,y) 

v(x,y,0) = v0(x,y) (1.10) 

w(x,y,0) = w0(x,y) 

where «o> ^o, CJO denote the values of the steady-state solution of a zero-pressure 
gradient flow over a flat plate. 
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4.3.      Boundary Conditions 
Ideally, the boundaries would be at infinity (except for the plate surface), with 

all disturbance quantities set to zero, and the values of u, v and u would be pre- 
scribed at all boundaries. The numerical method, however, allows only for a lim- 
ited integration domain, where the values at the boundaries are part of the solution. 
Hence, the boundary conditions are not quite straightforward. After several numer- 
ical tests, the boundary conditions given by Fasel (1976) were applied at the inflow 
and outflow boundaries and at the surface of the plate. The freestream boundary 
condition was adopted from Gruber (1986). 

Inflow boundary A-D 
u(xQ,y,t) = uB(xo,y) 

v(x0,y,t) = vB{x0,y) (1-11) 

u(xQ,y,t) = <jjB(x0jy) 

where uB, vB, UJB denote the Blasius solution of the boundary layer equations. 
Within the desired accuracy, this is identical to the solution of the full Navier-Stokes 
equations. The inflow conditions are kept constant throughout the computation. 

Surface of the Plate A-B 

u(a:,0,*) = 0 

v(x,0,t) = 0 

du d2v 
dx (*,<M) 

_ dv2 

(1.12) 

(i,0,t) 

The no-slip condition at the non-permeable wall imposes zero velocity. The. condi- 
tion for u) follows from (1.9 a). 

Outflow Boundary B-C 

d2 u 

dx2 

d2v 

dx2 

2u d2> 
dx* 

= -a2u'(xe,y,t) 
(xe,y,t) 

-- -a2v'(xe,y,t) 
(xe,y,t) 

= -a2u'(xe,y,t) 
(ze,y,t) 

(1.13) 

where the primes denote the disturbance-flow quantities: 

u'(x,y,t) - u(x,y,t)-u0{x,y) 

v'(x,y,t) = v(x,y,t)-v0(x,y) 

u'(x,y,t) = u(x,y,t)-u>o(x,y) 

(1.14) 



14 

These conditions allow a wave of wavenumber a to pass through the right 
boundary, assuming ö2/öx2(uo,uo,^o) I = 0 for all baseflow quantities. In the 
numerical simulation, a was the wavenumber of the Tollmien-Schlichting wave with 
the highest amplitude at the outflow boundary. 

A difficulty arose during the first computations. The amplitudes at the peaks of 
the induced wave packets were very high at the end of the integration domain, and 
the line iteration did not converge when a peak arrived at the outflow-boundary. 
The remedy was as follows: At the end of the region to be observed (Ng = 499), a 
so called "damping" domain was added from n = 500 to N — 700. But instead of a 
flat plate baseflow (corresponding to a Falkner-Skan parameter ßFS = 0), a baseflow 
with strong favorable pressure gradient was imposed (ßFS = !)• There were no 
feedback effects upstream, and all disturbances were so strongly damped that no 
further convergence problems arose. 

Freestream Boundary D-C 

u(x,Y,t) = U(x,t) 

dv 
dy (x,Y,t) 

u(x,Y,t) = 0 

dU_ 

dx 
(1.15) 

With U(x,t) an arbitrary function can be imposed. The condition dv/dy fol- 
lows from the continuity equation (1.5). Assuming irrotational flow outside of the 
boundary layer, u> = 0 is imposed at the boundary. 
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5.      Numerical Method 

Most of the results presented in this paper were obtained using a finite difference 
method that was developed for the investigation of the laminar-turbulent transition 
in a flat plate boundary layer. It was based on a method developed by Fasel (1976) 
and is described in detail by Rist (1990). 

The x and y derivatives in eqs. (1.8) and (1.9) are discretized using fourth- 
order accurate finite-difference approximations. In order to maintain consistency 
and an overall fourth-order accuracy, it is necessary to integrate the boundary 
conditions into the discretization of the equations at the gridlines adjacent to the 
boundaries. This is discussed in detail by Fasel (1979). The time derivative du/dt 
in the vorticity transport equation (1.8) is discretized using a third order Adams- 
Bashforth approximation. Thus, the method is explicit, and the values for w at a 
new timestep are easily computed from the data of the previous timesteps. 

The equation for v (1.9 a) is discretized using standard fourth-order differences 
for the x and y derivatives. At every timestep the resulting system of equations is 
solved by line iteration (SLOR). To account for the boundary layer characteristics 
of the flow, the y direction is treated such that the unknowns on lines n = constant 
parallel to the y coordinate are obtained by direct solution of a pentadiagonal system 
of equations. The iteration proceeds in x direction, marching downstream from the 
inflow boundary at every iteration sweep (see Fig.3). 

In order to fully exploit the vector-processing capabilities of the supercomputer 
used for these calculations, a modified "Zebra" line-iteration is used. Every iteration 
step is split up into three sweeps, starting at n = 3,4,5, respectively, and advancing 
in x by three gridlines each time the equation has been solved for a line n = constant. 
This is necessary because the computational stencil for v requires the values on the 
lines n — 2, n — 1 and n + 1, n + 2 for the x derivative. Vectorization of the sweeps, 
however, does not allow the use of data of the lines n — 2, n — 1 for the solution of 
line n. 

Thus, at iteration level i, the first sweep computes the new values for v on 
gridlines n = 3,6,9,..., using the old values of iteration level i — 1 on gridlines 
n — 2, n — 1, n + 1, n + 2. This avoids a recursive dependence and allows for 
vectorization. The second sweep computes the new values on gridlines n = 4, 7,10,..., 
using the values of the first sweep on gridlines n — 1, n + 2, and the old values of 
iteration level i — 1 on gridlines n — 2, n + 1. The third sweep computes the new 
values on gridlines n = 5,8,11,..., using the values of the first and second sweep on 
gridlines n — 2, n — 1, n + 1, n + 2. Overrelaxation is performed after every sweep. 
The values on gridlines n = 2, n = N — 1, n = N are computed separately at each 
iteration level in order to account for the boundary conditions, and at n = 1 the 
Blasius solutions are prescribed. 

The equation for u (1.9 c) is discretized using fourth-order accurate compact 
differences, and the resulting tridiagonal system of equations is solved using the 
standard Thomas algorithm. 

Some of the results were confirmed using another method, namely an implicit 
method which was also based on the original method of Fasel (1976).   For this, 
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the discretization of the spatial derivatives is essentially the same as in the explicit 
method described above. Instead of equation (1.9 c), equation (1.9 b) is used for 
the calculation of u. The dui/dt term in the vorticity transport equation (1.8) is 
discretized using a three point backward difference of second order accuracy, hence 
the method is fully implicit and the nonlinear terms are evaluated at the most recent 
timelevel. This discretization leads to a coupled, nonlinear system of equations for 
u, v, and u>. This system is solved at every timestep by a line iteration procedure, 
combining the iterations for all equations in one iteration loop. 

i 
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6.      Numerical Results 

6.1.      Modeling of the Forcing Field 

In the numerical simulation, the forcing field due to the rotation of the two 
rods is replaced by imposing a forcing function U(x,t) at the freestream boundary. 
This forcing function should model the following parameters for all modes: 
- amplitude (x,y) 
- phase (x,y) 
- phase speed (x,y) 

The fact that the function is not precisely known a priori gives rise to two 
conflicting difficulties: 

6.1.1.     Streamwise Modeling 

First, the forcing field is exactly prescribed at one point underneath the rotor, 
at a vertical distance y of about two boundary layer thicknesses, by the Fourier 
coefficients given by Kendall (1987,1). For the rest of the forcing domain, the ampli- 
tudes and phases are approximately given as curves over x, at a constant distance 
y (Kendall (1987), Fig.8). 

In the experiment, the phase speeds underneath the rotor of all modes were 
about u3 = 0.9Uc, Uc being the circumferential speed of the rods. The phase speeds 
at the upstream and downstream limits of the forcing region were considerably 
lower, this was due to the circular motion of the rods. 

The forcing amplitudes measured by Kendall are plotted in Fig.4 (Kendall 
(1987), Fig. 8a). They are highest at the center station and decay further upstream 
and downstream near the edges of the forcing region. Thus the forcing with high 
amplitudes near the rotor is characterized by a phase speed that is almost constant, 
and most of the disturbance energy enters the boundary layer in this region of nearly 
constant phase speed. 

For the numerical simulation it was therefore assumed that the variation of the 
phase speeds near the edges of the forcing region was not essential to the receptiv- 
ity process. By imposing a constant phase speed throughout the forcing domain, 
one additional parameter was eliminated and the investigation of the receptivity 
mechanism was simplified. 

The forcing to be imposed at the freestream boundary can be expressed through 
the function 

U(x,t) = U0 + Y^ Mx)i>i sm(atx - ßtt + fa) (1.16) 
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where: 

I 

UQ : freestream velocity of baseflow 

Ai(x) : amplitude of mode / 

ipl : factor due to extrapolation in y-direction 

at = I x a.\ : constant wavenumber of mode / 

ßi = I x ß\ : constant circular frequency of mode / 

ß\ : circular freqequency of mode 1 

«i = ßi/y-s '■ wavenumber of mode 1 

<f>i = ATAN2 (re(cj), -im(cj)) 

c/ : complex Fourier coefficient of mode / 

Here, (j>i is the relative phase of mode I at the rotor station x = xc. The nondi- 
mensional freestream velocity is set to 1. As suggested by Kendall, a Gaussian 
distribution was adopted to model the amplitudes Ai(x). 

Ai(x) = ai exp(—bi(x — xc) ) (1-17) 

where: 
ai :  amplitude of mode / at x = xc 

xc :  x-location underneath rotor-axis: 0.66 m 

The parameters b\ were chosen such as to obtain the best fit of the Gaussian 
approximation with the amplitudes of Fig.4 . The coefficients b^tpi,ci are given in 
Table 1, the amplitudes a; are those given in Table 3. The forcing amplitudes in 
the numerical simulation are plotted in Fig. 5. 

There is a reasonable agreement of the forcing amplitudes in experiment and 
simulation. However, the forcing amplitudes of the highest modes are given only 
near the rotor station, and it is hoped that the Gaussian distributions further up- 
stream and downstream are not too far off the realistic values. 

The factor b\ had to be chosen 50% smaller than it should have been according 
to the experimental data. This was done because otherwise the integration do- 
main would have been too large for a practical computation, since the computation 
requires that all disturbances are zero at the inflow boundary. A necessary conse- 
quence of this restriction is that the fundamental mode 1 is not as strongly forced 
in the simulation as in the experiment. 

6.1.2.     Vertical Modeling 

Second, the forcing is expected to generate TS waves inside the boundary 
layer that are subsequently convected downstream. Since their amplitudes decay 
exponentially outside the boundary layer, they are not yet negligible at a vertical 
distance of only two boundary layer thicknesses. Because the forcing function at that 
distance is only approximately given, one expects a superposition of the prescribed 
disturbance and the response of the boundary layer in the region downstream of 
the rotor. 
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It turned out that a way to account for this was to extend the integration 
domain in y-direction to about four to five boundary layer thicknesses. At the 
freestream boundary, the amplitudes of all response disturbances (the TS waves) 
are then set to zero. This restriction at such a distance should not too severely 
affect the development of TS waves closer to the wall. 

The only disturbances allowed at the freestream boundary are those imposed by 
the forcing function U{x,t). But because the data given by Kendall were measured 
at a distance much closer to the plate, extrapolation also in y-direction is necessary 
to provide realistic data at the distance further away. 

The velocity amplitudes u'(y) underneath the rotor axis are different for each 
mode (see Fig.18 at n = 82), and several numerical tests were necessary to obtain rea- 
sonably accurate amplitudes for all modes. The forcing amplitudes at the freestream 
boundary were then corrected through the factors ifti in eq.(1.16). Changes in the 
phases over y were so small that they could be neglected. It was also assumed that 
the coefficients 6/ were unaffected by the difference in y-distance. The amplitudes, 
observed underneath the rotor at a vertical distance of about two boundary layer 
thicknesses (at m = 51, n = 82) are given in Table 2. For comparison, those measured 
by Kendall are given in Table 3. 

The time signal of the u'-component of the forcing is shown in Fig.6. It is 
plotted over two periods, observed underneath the rotor station (at x=0.66 m) at 
two vertical locations, m = 121 (at the freestream boundary) and m = 51 (at a 
distance of about two boundary layer thicknesses). 

6.2.      Boundary Layer Response 

6.2.1.      Time Signal of Disturbance Flow 

The disturbance velocities u'(x,y) and v'(x,y) and the disturbance vorticity 
u'(x, y) are plotted in Fig.7, Fig.8 and Fig.9 for several timesteps. These perspective 
plots give a good impression of the generation of TS wave packets by the periodic 
forcing introduced at the freestream boundary. The vorticity plots in Fig.9 show the 
development of spikes, indicating a shift of energy to high frequency components. 

The disturbance velocity u', observed at the vertical location of maximum 
fluctuation inside the boundary layer, is shown in Fig. 10. The curves are plotted 
for several x-locations, starting at x=0.41 m, with increments of 12.3 cm. The third 
curve from the top shows the disturbance signal at the rotor station (at x=0.66 m), 
and the bottom curve the shows the disturbance signal at x=1.15 m. The successive 
vertical offset between each baseline corresponds to a disturbance velocity u' = l%. 
The corresponding data from the experiment are plotted in Fig.11 (Kendall (1987), 
Fig. 11). Compared to the curves from the simulation, it appears that in this 
figure each curve is upside down (also compared to Kendall's Fig. 14). Otherwise, 
qualitatively the curves from the experimental data agree very well with those from 
the numerical simulation. 

The disturbance velocity u' at x=0.91 m, observed at the vertical location 
of the strongest fluctuation, is shown in Fig. 12 (simulation) and Fig. 13 (Kendall 
(1987), Fig. 14). Again, there is a good qualitative agreement between experiment 
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and simulation in the shape of the disturbance signals. But there are also some 
important quantitative differences. In the simulation, the overall fluctuation level 
is considerably lower than in the experiment. Also, in the simulation the "spikes" 
in the signal are not as distinct, indicating that the highest modes carry less energy 
than in the experiment. 

6.2.2. Amplitude Growth from Linear Stability Theory 

To get a better understanding of the amplitude growth both in the experiment 
and in the simulation, it is useful to consider the amplitude growth predicted by 
linear stability theory. In Fig. 14, the integration domain of the numerical simulation 
is shown relative to the neutral stability curve for the undisturbed baseflow (a zero 
pressure gradient flow over a flat plate). 
According to this diagram, the following can be expected : 

- All modes should be stable at the inflow boundary. 
- The lowest modes (1-4) should be stable over most of the region considered in 

experiment and simulation (up to xwe). 
- The most amplified TS waves should be within the modes 6 - 10, since these 

modes are inside the neutral stability curve throughout most of the computa- 
tional domain. 

- The highest modes (11 - 15) should subsequently pass both the lower and upper 
branch of the neutral stability curve, and they should be damped at the end of 
the region considered here. 

6.2.3. Streamwise Amplitude Development 

For further interpretation of the results, the time signals of the u' velocity were 
Fourier analyzed at every (x,y) gridpoint. The amplitudes of u'(x,y) are plotted 
in Fig. 15. Some characteristic differences between the stable lowest modes and the 
unstable higher modes can be observed. The amplitudes of the lowest modes grow 
in the region upstream of the rotor and decay thereaft. Apparently, their growth 
rates are essentially prescribed by the forcing. 

The amplitudes of the higher modes 5-10 grow throughout the observed region 
once they are induced by the freestream forcing. The highest modes (stable down- 
stream of the rotor) exhibit a rather irregular amplitude growth, with alternating 
growth and decay. A closer inspection reveals a strong modulation in streamwise 
direction. This is apparently due to an interference between the TS-waves and 
Stokes-type waves traveling at the forcing phase speed u3, introduced through the 
nonlinear convective terms in the vorticity transport equation (see Appendix D). 
This amplitude modulation has been observed in several other experiments, and 
it is also present in the experimental data obtained by Kendall (see Fig. 17). By 
smoothing out the variation due to the amplitude modulation, one obtains growing 
amplitudes of modes 11-15 all the way downstream of the rotor, even outside of the 
forcing region. This is not in agreement with linear stability theory for a steady flat 
plate boundary layer. 

For comparison with Kendall's experimental data, the u' amplitudes log(A) at 
the vertical location of maximum fluctuation are plotted in Fig. 16. The amplitudes 



21 

log (A/Aref) measured by Kendall are shown in Fig.17. Here, R = 550 corresponds 
to x=0.46 m and .R = 850 to x=1.0 m (R — y/Rex). Comparison shows good quali- 
tative agreement of experiment and simulation, However, there are some important 
differences: 

mode 1 In the simulation, the slope at the upstream limit of the forcing 
region (x=0.46 m) is steeper then in the experiment. Assuming 
a Gaussian amplitude distribution in both experiment and simu- 
lation, this indicates that the amplitude further upstream of the 
rotor is lower than in the experiment. This is a consequence of the 
lower exponent b\ in the forcing function. 

modes 5-15 In the simulation, the initial amplitudes at the beginning of the 
forcing are two to three orders of magnitudes lower than in the ex- 
periment. This is due to the fact that all disturbances are zero at 
the inflow boundary in the simulation, whereas a minimum back- 
ground turbulence cannot be avoided in windtunnel experiments. 

modes 11-15 In the simulation, the modulation of the amplitudes of modes 11 
and 12 downstream of the rotor is not as distinct as in the exper- 
iment, although it clearly is present. Nevertheless, the amplitudes 
of the highest modes (13-15) are strongly modulated in the simula- 
tion. Apparently, the qualitative characteristics are the same as in 
the experiment, they are however somewhat shifted to the higher 
modes. 

The amplitudes of u'(y) are shown in Fig.18 for various x-locations. Since all 
fluctuations except the forcing were set to zero at the freestream boundary, a non- 
zero amplitude at m = 121 indicates that the particular mode was forced at that 
location. 

n= 42 (x=0.41 m) The lowest modes are already forced, wheras higher modes 
exist only as very weak background fluctuation ("numerical noise"). 

n= 82 (x=0.66 m) This is the location of strongest forcing underneath the rotor 
station. The amplitude profiles of the lowest modes are similar to those 
of a Stokes-oscillation. The higher and highest modes (unstable) look 
like "forced eigenfuctions". Starting from the freestream boundary, the 
amplitudes decay until just outside the boundary layer. Inside the layer, 
the profiles are similar to those of Orr-Sommerfeld eigenfunctions (TS 
waves). 

n=122 (x=0.91 m) The amplitudes of modes 1-12 show distinct eigenfunction 
profiles. The highest modes 13-15 exhibit some irregularities near the 
wall, this suggests a possible nonlinear development. 

n=162 (x=1.15 m) The amplitudes of modes 3-11 show eigenfunction-like pro- 
files. Those of the lowest modes 1,2 and of the highest modes 12-15 are 
somewhat irregular at the wall, again possibly indicating nonlinear effects. 
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6.2.4. Streamwise Phase Development 

The phase development of u' is shown in Fig. 19. The continuous slopes of the 
phase curves of the lowest modes demonstrate that they have wave-like behavior 
already far upstream of the rotor. The higher and highest modes do not set in until 
shortly before the rotor station: Here, their respective forcing amplitudes have 
reached a certain threshold above the "numerical noise". This observation agrees 
well with the amplitude curves in Fig. 16, where the higher amplitudes start growing 
only right under the rotor. The highest modes exhibit a slight change of phase speed 
downstream of the rotor, around x=0.9 m. This corresponds to the dents in the 
amplitude (x) curves, and to the irregularities observed in the amplitude (y) profiles 
in Fig.18. 

6.2.5. Comparison of Amplitudes in Experiment and Simulation 

The time signals plotted in Fig. 12 and Fig. 13 show that the fluctuation level 
at the end of the forcing domain is considerably higher in the experiment than 
in the simulation. This is confirmed by the absolute values of the amplitudes, 
given in Table 4 and Table 5. These were recorded at the vertical location of 
maximum fluctuation, at x=0.91 m and n = 122, respectively. The experimental 
amplitudes are between 15% and 47% higher than those in the simulation. Also, 
the overall disturbance amplification in the simulation is equal to or higher than 
that in the experiment, yet the absolute amplitudes at the end of the forcing are 
lower (particularly those of the highest modes). There are several reasons for the 
differences: 

(1.) The amplitudes of the background fluctuations upstream of the forcing were 
higher in the experiment than in the simulation. In a windtunnel experiment, 
disturbances of any frequency are always present with some finite amplitudes, 
whereas in the simulation there were no disturbances introduced at the inflow 
boundary of the integration domain. This is likely to be the most important 
cause for the difference in the output amplitudes. 

(2.) The forcing of the fundamental mode 1 is not as strong in the simulation 
as in the experiment. Due to the nature of the energy transfer mechanism 
(described later), this has an important effect on the amplitudes of other 
modes as well. 

(3.) In the simulation, the forcing amplitudes of several modes at n = 82 (under- 
neath the rotor) are somewhat smaller than in the experiment. 

(4.) The nature of the high frequency forcing downstream of the rotor station is 
not clear from the experimental data, the forcing imposed in the simulation 
may not be sufficient. 

(5.) A constant phase speed was assumed in the simulation, whereas the phase 
speeds in the experiment were lower at the edge of the forcing region. 

The effects of point 4 and 5 are not very clear, and they may not be important for 
the receptivity process. 
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6.2.6.     Evolution of Modes 1, 8 and 15 

To gain further insight how the freestream disturbances excite the TS waves in 
the boundary layer, the amplitudes and phases of modes 1, 8 and 15 were examined 
at several x-locations. Mode 1 was chosen because it is dominant throughout most 
of the integration domain, and because it is the fundamental mode. Mode 8 was 
chosen because it is among the most unstable modes, with a strong amplification 
all the way downstream from the rotor station. At the end of the observed region, 
the amplitude of mode 8 is the highest of all modes. Mode 15 was chosen because 
it is the highest mode, and it is already past the neutral stability curve downstream 
of the rotor axis. 

The phase speed of the forcing us = 0.33 Uoo is very close to the phase speed 
of the eigenfunctions of the boundary layer (both stable and unstable ones). As a 
result, there is a close match of both wavelength and phase speed between the forcing 
disturbance and the particular eigenfunction (the response of the boundary layer) 
at any frequency. On the other hand, there are no rapid streamwise variations 
in the steady flow, which would enhance a breakdown of disturbances with long 
wavelengths into TS waves. Thus, one can expect resonance-like responses of the 
boundary layer. Depending on the frequency Fn of the disturbance and on the local 
Reynolds number Res, the response is expected to be of one of three types: 

(1.) Subcritical excitation. In the stability diagram (Fig. 14), this case corresponds 
to a point (Fn,Res) upstream of the lower branch of the neutral stability 
curve. (Mode 1) 

(2.) Resonance excitation. This case corresponds to a point (Fn,Res) between 
the upper and lower branches of the neutral stability curve. (Mode 8) 

(3.) Supercritical excitation. This case corresponds to a point (Fn,Reg) down- 
stream of the upper branch of the neutral stability curve. (Mode 15). 

The amplitudes and phases of mode 1 are shown in Fig.20 and Fig.21. They 
are given at various x-locations, starting at x=0.41 m (n = 42), with an incre- 
ment of 12.3 cm between subsequent stations. This case represents a "subcriti- 
cal excitation": The induced disturbance wave starts out with a profile similar to 
that of a Stokes-type oscillation. At subsequent stations, the development of an 
eigenfunction-type profile is clearly observable. Since mode 1 is stable throughout 
the integration domain, its amplitude growth is largely due to the forcing itself. 
The amplitude inside the boundary layer starts to decay once the forcing ampli- 
tude decreases (downstream of the rotor). At x=1.03 m (n = 142), both amplitude 
and phase exhibit somewhat irregular behavior. At this location, the amplitudes of 
the other modes have reached such high levels that they affect the development of 
mode 1. 

The amplitudes and phases of mode 8 are plotted in Fig.22 and Fig.23. Since 
mode 8 forcing is restricted to a smaller region than the forcing of mode 1, these 
curves are recorded at stations starting at x=0.54 m (n = 62). The spatial increment 
between subsequent x-locations is 3 cm. This case represents the "resonance ex- 
citation", because mode 8 is unstable throughout most of the integration domain. 
Again, the amplitudes and phases at the onset are similar to those of a Stokes- 
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oscillation wave. At subsequent stations, one can clearly observe the evolution of 
profiles that are reminiscent of "forced" eigensolutions, where the amplitude does 
not decay outside of the boundary layer but rises exponentially. Finally, the typical 
profiles of TS waves appear downstream of the forcing region. 

The amplitudes and phases of mode 15 are plotted in Fig.24 and Fig.25. Curves 
are shown for stations starting at x=0.54 m (n = 62). The spatial increment between 
subsequent x-locations is 3 cm. Theoretically, this case represents the "supercritical 
excitation", because downstream of the rotor, the mode 15 eigensolutions are past 
the upper branch of the neutral stability curve, and the amplitude should decay. 
First, one can observe that mode 15 forcing sets in much later than mode 8 forcing. 
Once mode 15 disturbances are present, their profiles evolve rapidly into profiles 
of forced eigensolutions. Downstream of the rotor, the amplitudes and phases are 
similar to those of TS-waves. However, the growth rates are no longer according to 
those predicted by linear stability theory for a flat plate flow: As mentioned above, 
the (smoothed) amplitude keeps growing downstream of the forcing region, whereas 
it should decay according to Fig. 14. The reason for this growth is apparently the 
high amplitudes of the lower modes, which have an important effect on mode 15 as 
well. 

6.2.7.     Influence of Fundamental Mode 

To evaluate the influence of the fundamental mode on the total disturbance 
flow, the relation between the signal containing all modes and that of mode 1 alone 
was investigated. Fig.26 shows the total disturbance u', recorded for all x at several 
timesteps. A closer inspection reveals strong growth of high frequency components 
(spikes) in the wave troughs of the fundamental mode. 

This was further confirmed by comparing the total disturbance flow and the 
disturbance flow of mode 1 only, as shown in Fig. 27. The mode 1 signal was re- 
computed from the stationary baseflow and from the Fourier coefficients of mode 1. 
The growth of high frequency components in the mode 1 wave troughs is evident, 
as is the damping of high frequency components in the mode 1 wave crests. This 
can also be observed from experimental data (Figs.ll, 13). 

Although there are quantitative differences between the experimental and nu- 
merical data, the qualitative agreement is satisfactory, and the essential features 
are the same. Therefore one can expect that the receptivity mechanism is the same 
in both cases, and that the mechanism proposed in the next chapter can explain 
the questions left open by the experiment. 
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7.      Concept of Receptivity Mechanism 

The conclusion is that the high amplitudes of the lowest modes alter (locally 
in space and time) the stability characteristics of that flow in such a way that the 
fundamental mode together with the staedy mean flow serve as a new "baseflow" 
for the instability of the higher modes. The phase velocity of the forcing field is 
close to that of the most unstable TS waves. All disturbance modes introduced 
by the forcing have comparable phase speeds (between 0.28 Uoo and 0.36 Uoo near 
the rotor station), but the frequencies and wavelengths of the lowest and highest 
modes are an order of magnitude apart. Therefore, the low frequency disturbances 
(mode 1,2,3 ...) can be superimposed on the stationary flow and act as a time- 
dependend "baseflow" for a high frequency disturbance, say mode 8 or 12. As a 
consequence, TS waves that "travel" in a wave trough of the low modes experience 
a more destabilizing "baseflow" and they are therefore more strongly amplified than 
in a steady flat plate boundary layer. TS waves that "travel" on a wave crest of the 
low modes are less amplified or even damped. 

For all modes, there is a phase shift over y between the freestream and the ver- 
tical location of maximum amplitude inside the boundary layer. Therefore, a dis- 
turbance that is introduced as a wavecrest at the freestream boundary (or through 
the rotor rotation in the experiment) experiences a phase shift over y and forms a 
wavetrough inside the boundary layer that acts as a destabilizing "baseflow" for TS 
waves. By the same reasoning, a wavetrough in the freestream disturbance leads 
to a wavecrest inside the boundary layer and thus to a more stabilizing "baseflow". 
This process is illustrated in Fig.28. 

This mechanism can explain the development of the sharp spikes in the bound- 
ary layer as it responds to the forcing. The lowest modes are already forced far 
upstream of the rotor station, but the flat plate baseflow at this Reynolds number 
is stable for these frequencies. Therefore, their amplitudes inside the boundary 
layer are highest in the region near the rotor, and they decay downstream, where 
the forcing amplitudes decrease. 

The forcing of the higher (unstable) modes does not set in until much closer to 
the rotor station, where the amplitudes of the lowest modes are very high. Hence, 
the higher modes experience a changed baseflow: The low mode wave troughs are 
more "receptive" to high frequency disturbances than the wave crests. These high 
frequency disturbances are then strongly amplified when traveling downstream in 
the low mode wave trough, or damped in a wave crest. The strong spikes in the 
(barely observable) troughs of mode 1 far downstream are the result of this process. 

Because the low mode disturbances are all in phase underneath the rotor, the 
effect of this mechanism on the higher modes is very strong, as demonstrated by 
the u'(t) plots in Figs. 10, 12 and 13. The distinct spikes in the low mode wave 
troughs (see Fig. 12) will most likely become turbulent spots further downstream. 

Because this process is not symmetric, the RMS amplitudes are higher than 
those predicted by LST for a stationary baseflow. A low mode wave trough of 1% 
amplitude results in much stronger amplification than in a steady flow, a wave crest 
of same amplitude in only moderately less amplification. This can be regarded as 



26 

a hysteresis in the amplification mechanism. 
Downstream of the rotor, there is a broad spectrum of frequencies with rather 

high amplitudes present in both experiment and simulation (see Figs. 16,17). To- 
gether with the mechanism described above, this leads to a strong, partly nonlinear 
amplification of those modes that are already past the upper branch of the neu- 
tral stability curve (for a flat plate baseflow). These are modes 11-15, with the 
highest ones (13-15) exhibiting particularly irregular, nonlinear amplitude (y) and 
phase (y) profiles. 
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8.      Verification of Receptivity Mechanism 

8.1.      Influence of Forcing Amplitudes 

The mechanism proposed here can also explain the difference in the forcing 
efficiency of 0.48 cm and 0.32 cm rods that was observed by Kendall. The larger 
rods induce higher forcing amplitudes for all modes, in particular also for the lowest 
modes. Consequently, the wave troughs in the receptivity region are more distinct, 
and the higher modes are stronger amplified here than in the case with the smaller 
rods. This should lead to a higher output/input (o/i) ratio for the larger rods. 

To verify this reasoning, two additional test runs were performed. The phases 
of the forcing functions were the same as in the simulation of the experiment. 
However, all forcing amplitudes were multiplied by a factor of 2/3 (test case small) 
and 4/3 (test case big), thus preserving the waveform of the forcing. 

One expects that the o/i ratio for the lowest modes (1,2,3) should be roughly 
the same in all three cases. Their wavelengths and frequencies are not very different 
from those of mode 1, therefore they are not so strongly affected by the transient 
change of the baseflow stability characteristics. On the other hand, the amplification 
rates of the higher modes depend directly on the forcing amplitudes of the lowest 
modes. Thus, higher forcing amplitudes (test case big) should yield a higher o/i 
ratio for the higher modes than the reference case, whereas lower forcing amplitudes 
(test case small) should yield a lower o/i ratio. 

The o/i ratios for all three cases are plotted in Fig.29. Here, "Lauf 1" refers to 
the reference case, "big" to the test case with forcing amplitudes multiplied by 4/3, 
and "small" to the test case with forcing amplitudes multiplied by 2/3. The "input" 
amplitudes are those recorded at the point (n = 82,ra = 51) underneath the rotor, 
and the "output" amplitudes are recorded at the point (n = 122, m = 9). These loca- 
tions correspond to the ones used by Kendall in the evaluation of the experimental 
data. For comparison, the experimental data are plotted in Fig.30 (Kendall 1987, 
Fig. 15). It should be noted here that Kendall used the nondimensionalized distur- 
bance velocity u'/Uoo as output and the nondimensionalized disturbance pressure 
p'/qo as input , where q0 = pU^/2. In the evaluation of the numerical data, the 
nondimensionalized disturbance velocity u'/Uoo was used. Therefore, a o/i ratio of 
80 in the numerical data (Fig.29) corresponds to a o/i ratio of 40 in the experimental 
data (Fig.30). 

The output/input ratios of the three cases are as expected. The stronger low 
mode forcing results in stronger amplification of the TS waves, and the maximum 
o/i ratio is shifted to a higher mode. On the other hand, the lower modes do 
not exhibit very different o/i ratios. This agrees well with the experimental data. 
However, since the waveforms of the 0.32 cm and 0.48 cm forcing in the experiment 
were different, one can only qualitatively compare the two curves in Fig.30. A 
quantitative comparison is possible in Fig.29 (numerical data), because the relative 
waveforms were the same in all three cases. It is one of the advantages of numerical 
simulations that the "input" can easily be controlled, whereas this is extremely 
difficult to do in physical experiments. 
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The fact that the o/i ratios of the reference case (Lauf 1) are smaller than those 
of the experiment is due to the smaller output amplitudes. The reason for this are 
the weaker background turbulence in the simulation and the weaker forcing of mode 
1, as was discussed chapter 6. 

8.2.      Comparison of Navier-Stokes Results and Linear Sta- 
bility Theory 

If the mechanism described above is indeed relevant, then the qualitative be- 
havior should be similar in a model where only two modes are used. This idea 
was tested in another numerical calculation. The parameters for the computer run 
were the same as in the "test case small" run of the previous section to ensure that 
the amplitudes would not be too high for linear growth. But instead of a broad 
frequency spectrum, the forcing function consisted of only two frequencies: Mode 
1 was to force the high-amplitude, low-frequency disturbance,and mode 8 was to 
induce an unstable TS wave. Since the amplitude of mode 1 was much higher than 
the amplitude of mode 8 in the center of the forcing region, the feedback of mode 
8 on the amplification of mode 1 is expected to be negligible. Indeed, it turned out 
that the amplitude of mode 1 at the aft limit of the forcing is somewhat smaller 
than that in the simulation with all modes present. This confirms the assumption 
that nonlinear effects played a certain role in the amplification downstream of the 
rotor. 

The forcing signal u' at x=0.66 m is plotted in Fig.31 for two different distances 
from the wall: First at the freestream boundary (m = 121) and second at a distance 
of about two boundary layer thicknesses (m = 51). Here one can clearly observe the 
mode 1 signal and superimposed on it mode 8. The disturbance signal u' inside the 
boundary layer at a location far downstream (x=1.14 m) is plotted in Fig.32. 

The modulation of the mode 8 amplitude over one period of the fundamental 
is evident in Fig.32. In order to evaluate the effect of the mode 1 fluctuation on 
the amplification of mode 8, the maximum amplitude was divided by the minimum 
amplitude (of mode 8). The amplification ratio is 

(max.ampl\ _  J/N 
— ^r = 1.49 
min.ampl/N.St 

For comparison of this result with the amplitude growth predicted by linear 
stability theory (LST), the mean flow and mode 1 were combined to form the time- 
dependend "baseflow" for the TS waves. The so obtained velocity profiles were used 
as the baseflow-profiles in the Orr-Sommerfeld equation. This equation was then 
solved to compute the growth rates of normal modes of frequency F8 at subsequent 
x-locations, following the path of a TS wave traveling downstream in either a wave 
trough or a wave crest. The differences between the stationary flow profiles and 
the "baseflow" profiles used for the LST computation are plotted in Fig.33 a,b . 
The velocity profiles that lead to maximum amplification of a TS-wave are shown 
in Fig. 33a: A wave trough over most of the integration domain is characteristic for 
that case.  Because the phase speed of mode 8 is higher than that of mode 1, TS 
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waves that are at first amplified in a low mode wave trough travel a little faster than 
that trough. After some time, they reach the next wave crest, where the growth 
rates are smaller. This dispersion effect can be seen in Fig. 33 a: The velocity profile 
at the downstream end of the integration domain at x=1.14 m has a wave crest inside 
the boundary layer, hence a mode 8 disturbance should be less amplified at that 
location than in the case of a steady baseflow. This agrees with the observation of 
the spike growth in Fig.27. On the other hand, TS waves that are at first damped 
in a wavecrest are amplified when they reach the next wave trough. The velocity 
profiles for least amplification are shown in Fig.33b . 

The growth rates — a{ for four cases are plotted in Fig.34, where a.i is nondi- 
mensionalized by multiplication with £ = 0.66 m: 
I. maximum amplification, computed from LST with destabilizing "baseflow". 
II. maximum amplification, computed from LST with stabilizing "baseflow". 
III. amplification in steady mean flow, computed from LST with steady boundary 

layer baseflow. 
IV. average amplification, obtained from the Fourier analysis of the Navier-Stokes 

computation (~ Lauf 2). 
It can be observed that the average amplification in the Navier-Stokes compu- 

tation is somewhat higher than that predicted by LST for a steady baseflow, this 
confirms the notion of the hysteresis-like mechanism. Also, due to the dispersion 
mentioned above, the amplification rate of case I is lower than that of case II at the 
end of the observed domain. 

To compare the amplification rate predicted by linear stability theory with 
that from the Navier-Stokes simulation, the amplitude ratio (maximum amplifica- 
tion / minimum amplification) was evaluated. It is 

/max.ampl\ 
( ~raTZ, )     =i.58, 
\ mm. amply LST 

which is about 6% higher than the value obtained in the Navier-Stokes calculation. 
This is rather accurate for an integration domain of more than 14 TS-wavelengths, 
considering that the disturbances are not simply amplified in the Navier-Stokes cal- 
culation, but first introduced from the freestream. It appears that the transient 
change of the receptivity coefficient in wave troughs and wave crests is about pro- 
portional to the transient change of the instability amplification. This assumption 
needs to be further investigated by analytical (or semi-analytical) means. 

One should also note that the amplification rates obtained from linear stability 
theory are computed with the assumption of parallel baseflow at each streamwise 
location. Thus, any gradient of the baseflow velocity in streamwise direction is 
neglected. The fact that there is a very good agreement between these results and 
the results of the Navier Stokes simulation suggests that the transient change in the 
amplification rates is mostly due to the variation of the "baseflow" velocity profiles 
in normal direction, and that the gradient of the "baseflow" velocity in streamwise 
direction is considerably less important. 

The results of this numerical experiment confirm the concept of the receptivity 
mechanism described in chapter 7. 
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9.       Conclusions 

The numerical simulation led to a new model for this receptivity mechanism. It 
was demonstrated how low-frequency (LF) freestream perturbations with high am- 
plitudes can affect both the initial amplitudes of high-frequency (HF) disturbances 
within the boundary layer and the subsequent amplification of these disturbances 
as they travel downstream. 

The essential feature of this mechanism is the large difference in length and time 
scales between the low frequency disturbances and the amplified TS waves. When 
the LF disturbances are superimposed on the steady boundary layer flow, they 
alter (locally in space and time) its stability characteristics. Steady flow and LF 
disturbances together form a new, time dependent "baseflow" for disturbances with 
higher frequencies. First, in a wavetrough of the LF disturbances the flow is more 
"receptive" to disturbances with higher frequencies when compared to the steady 
mean flow, i.e. a given HF freestream perturbation generates a HF disturbance (a 
TS wave) with a higher initial amplitude in the boundary layer. Second, the TS 
wave is more strongly amplified as it travels downstream, because the "baseflow" 
in the LF wavetrough is more unstable than the steady mean flow. Similarly, the 
"baseflow" formed by a LF wavecrest is less "receptive" and more stable for TS- 
waves. 

There is no reason for this process to be restricted to freestream disturbance 
fields with a phase speed close to that of the most unstable TS waves. If the 
wavelength and frequency are sufficiently different (very low frequency disturbance 
vs. TS waves), and if the low-frequency forcing is strong enough (forcing extended 
over a large domain, high forcing amplitudes), the described mechanism may well 
be important for receptivity to unsteady pressure fields that travel at the freestream 
speed Uoo- Possible examples are buffeted boundary layers, or the "breathing mode" 
of boundary layers induced by grids in a windtunnel (Kendall, 1985): There are 
certainly non-negligible 3-D effects present, but the high-amplitude, low frequency 
disturbances reported by Klebanoff (1971) and Kendall (1985) should also play 
an important role in the amplification of TS waves which can be ascribed to the 
mechanism presented in this report. However, further experiments, both physical 
and numerical, need to be carried out to support these conjectures. 
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Appendix A: Parameters for the Simulation 

Experimental Parameters 
The parameters of the particular experimental configuration simulated numerically 
were the following: 

freestream speed Uoo = 11.6 m/s 

Reynolds number Re — 4.761 x 105 (based onL = xc = 0.66 m ) 

diameter of rods 0r = 0.48 cm 

frequency of mode 1 F\ = 0.0685 

phase speed of forcing ua = 0.33 x U0 'oo 

where: 

Fn = TTT" X 104 dimensionless frequency 
UL oo 

ßn :  circular frequency in rad/s 

v :  dynamic viscosity in m2/s 

Mode 1 through mode 15 denote the components of the Fourier transform of the 
disturbance (both forcing and response): Due to the forcing by revolving rods, the 
flow is periodic with period T\ =27r//?i. 

Numerical Parameters 
The parameters used for the numerical simulation were the following: 

XQ = 160 mm 

xwe = 1182mm NE = 499 

xe = 1595 mm JV = 700 

F = 19.46 mm M = 121 

At = 4.2819 x 10"5 s Ti = 2560 At 

where: 
T\ : period of mode 1 

Only the values at every third ;r-gridline up to NE were stored on tape at 
every 10th timestep. Thus, the stored data cover a (M x N) = (121 x 167) grid, 
and they are periodic over 256 timesteps. The gridlines referred to in chapters 6 
- 8 are those of the (121 x 167) grid. 
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Table 1: Forcing Coefficients 
Mode bi [m-a] ijn re(cj) im(cj) 

1 40. 1.03 111.17 -212.05 
2 56. 1.04 92.09 -102.58 
3 64. 1.06 76.88 -48.23 
4 84. 1.13 59.15 -20.99 
5 159. 1.32 44.00 -9.20 
6 167. 1.48 30.25 -4.19 
7 296. 1.89 21.10 -0.90 
8 298. 2.24 13.60 -0.46 
9 302. 2.73 9.19 0.34 

10 349. 3.52 5.95 0.42 
11 375. 4.50 3.87 0.14 
12 400. 5.86 2.58 0.14 
13 425. 8.04 1.46 0.22 
14 450. 10.11 1.01 -0.04 
15 475. 15.53 0.63 0.16 
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Table 2: Forcing Amplitudes 
Experiment 

Mode U'/Uoo 

1 0.25 x 10~2 

2 0.14 x 10"2 

3 0.94 x 10"3 

4 0.65 x 10"3 

5 0.46 x 10-3 

6 0.32 x 10"3 

7 0.22 x 10~3 

8 0.14 x 10"3 

9 0.95 x 10~4 

10 0.62 x 10"4 

11 0.40 x 10~4 

12 0.27 x 10"4 

13 0.15 x 10"4 

14 0.10 x 10-4 

15 0.67 x 10~5 

Table 3: Forcing Amplitudes 
Simulation 

Mode u' 
1 0.24 x 10~2 

2 0.14 x 10-2 

3 0.93 x 10-3 

4 0.64 x 10"3 

5 0.45 x 10-3 

6 0.30 x 10"3 

7 0.20 x 10"3 

8 0.13 x 10"3 

9 0.83 x 10"4 

10 0.54 x 10~4 

11 0.35 x 10~4 

12 0.23 x 10"4 

13 0.13 x 10"4 

14 0.90 x 10-5 

15 0.67 x IQ-5 

Table 4: Output Amplitudes 
Experiment 

Mode u'/^oo 
1 0.78 x 10"2 

2 0.32 x 10~2 

3 0.39 x 10"2 

4     - 0.45 x 10"2 

5 0.52 x 10"2 

6 0.59 x 10"2 

7 0.63 x 10"2 

8 0.61 x 10"2 

9 0.54 x 10-2 

10 0.43 x 10"2 

11 0.30 x 10"2 

12 0.17 x 10"2 

13 n.a. 
14 n.a. 
15 n.a. 

Table 5: Output Amplitudes 
Simulation 

Mode u' 
1 0.66 x 10"2 

2 0.28 x 10~2 

3 0.26 x 10~2 

4 0.32 x 10-2 

5 0.39 x 10"2 

6 0.46 x 10"2 

7 0.46 x 10"2 

8 0.43 x 10"2 

9 0.37 x 10"2 

10 0.27 x 10~2 

11 0.17 x 10-2 

12 0.90 x 10"3 

13 0.32 x 10~3 

14 0.11 x 10"3 

15 0.18 x 10~3 
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Appendix C: The Interference Between 
Two Waves with Same Frequency 
and Different Wavenumbers 

Let 
/ = i>f{x,y) exp i(afx - ßt) 

g = ipg(x, y) exp i(agx - ßt) 

be two spatially developing waves with the same frequency, tpf and rpg are the 
(complex) amplitude distribution functions, a/ and ag are the complex wavenum- 
bers, and ß is the real circular frequency: 

i>s =  V>Re,f + VlrnJ 

$9 =  i>Re,g + ^Im,g 

af = OiReJ + aimj 

ag =  &Re,g +aim,g 

OiRe,f Cf  =  ß 

OCRt,gCg   =  ß 

where 

c/, cg are the phase speeds of the waves. The subscript Re denotes the real part 
and the subscript /m denotes the imaginary part of a complex number. 

The time average of the product / • g can then be expressed through 

1 
f-g = - Re{ il>f V»% exp i(aRej - aRe^)x } exp-(aImJ + aIm,g)x 

where the superscript * denotes the complex conjugate (Nishioka and Morkovin,1986). 
The amplitude of the product grows with exp— (<*jm)/ + aimtg)x and oscillates 
around this mean value with exp i(aRej — ocRe>g)x . Note that if both waves have 
the same phase speed (and thus the same real part of the wavenumber), there is 
no oscillation at all. If the phase speed of one of the waves, say of /, is infinite 
(and the wavenumber <XRej is zero), then the average amplitude oscillates with 
the wavelength of the other wave a.Rt,g. 

As an example, consider the modulation of the amplitude of mode 15 in the 
present work (Figs.15, 16): The frequency is ß\s = 858.75 rad/s. The wavenumber 
of a TS-wave is roughly oiRejTS = 194 1/m, and the wavenumber of the Stokes-type 
wave is about a#e)st = 224 1/m. The dhTerence is aiRe>st — Q.Re,TS = 30 1/m, that 
corresponds to an oscillation wavelength of about 0.2 m. This is approximately 
the distance between relative maxima in the amplitude curve of mode 15 in Fig. 16. 
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Fig.l. Test configuration show- 
ing relation of rotor to bound- 
ary layer plate. Dimensions in 
cm. 
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Fig.2.  Integration domain for the numerical simulation. 
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Fig.4.  Experiment:  Fourier amplitudes 
of inferred pressure at layer edge, refer- 
ence is arbitrary.  Rotor axis at 0.66 m, 
measurements at 5.08 cm increments 
upstream and downstream of axis. 
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Fig.5.  Numerical simulation:  Fourier 
amplitudes of disturbance velocity u' 
at the freestream boundary (m = 121). 
Rotor axis at n = 82 (x=0.66 m). 
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Fig.6. Time signal of the forcing at 
n = 82 (x=0.66 m).  Disturbance 
velocity u' plotted over two periods. 
m = 121 is at the freestream boundary, 
m = 51 is at about two boundary layer 
thicknesses. 
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Fig.7. u' disturbance velocity over (x,y).  Mean flow direction left 
to right, streamwise coordinate x. 
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Fig.7. continued 
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Fig.7. continued 
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Fig.7. continued 
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Fig.8. v' disturbance velocity over (x,y). Mean flow direction left 
to right, streamwise coordinate x. 
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Fig.8. continued 
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Fig.8. continued 



47 

0. lUlE + 00 

-0.843E-01 

I 
VORTICITT, LAUF 1 

TIME LEVEL = 

0. miE + oo 

-0.8U3E-01 

VORTICITT, LAUF 1 

TIME LEVEL = 33 

Fig.9. u/ disturbance vorticity over (x,y).  Mean flow direction left 
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Fig.10.  Numerical simulation: Stream- 
wise development of induced TS waves. 
u'(i) observed over two periods near ver- 
tical location of maximum fluctuation. 
First station (top) at n = 42 (x=0.41 m), 

x-increments are 20 gridlines (12.3 cm). 
Rotor station is at 0.66 m (third sta- 
tion). Vertical offset between successive 
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Fig.11.  Experiment: Streamwise de- 

velopment of induced TS waves. Ob- 
served near vertical location of peak 
response.  First station (top curve) is 
0.46 m; increments are 2.54 cm ex- 
cept last is 1.5 cm. Rotor at 0.66 m 
(ninth station). Vertical offset between 
successive baselines corresponds to 
u'/J7oo = 0.07, approximately. Velocity 

increases upward. 
Note:  Each curve in this figure is to be 

reverted upside down for comparison. 
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Fig.12.  Numerical simulation: Time 

signal u'(t) observed at n = 122 (x=0.91 m) 
near vertical location of maximum fluc- 
tuation. 

Fig.13 Experiment: Time signal u'{t)/U 
observed at x=0.91 m near vertical lo- 
cation of maximum fluctuation.  Upper 
curve for 0.48 cm rods, lower curve for 

0.24 cm rods (5 x magnified). 
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Fig.14.  Neutral stability curve. Solution a, = 0 of the Orr-Sommerfeld 
equation for a zero pressure gradient, flat plate baseflow.  Disturbances 
are amplified between the upper and lower branches of the neutral stabil 
ity curve. 
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Fig.20.  Fourier amplitudes of u'(y) dis- 
turbance, mode 1.  First station (top) 
at n = 42 (x=0.41 m). x-increments 

are 20 gridlines (12.3 cm). Vertical 
offset between successive baselines cor- 
responds to u'/?7oo=0.5%. 

Fig.21.  Phases of u'(y), mode 1, eval- 
uated together with amplitudes of 
Fig.20.  Phase data are divided by it. 
Vertical offset between successive base- 

lines corresponds to phase/r = 2. 
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Fig.22a.  Fourier amplitudes of u'{y) 
disturbance, mode 8.  First station 
(top) at n = 62 (x=0.54 m). x-increments 

are 5 gridlines (3 cm). Vertical off- 

set between successive baselines corre- 

sponds to u'/Uoo  =  0.05%. 

Fig.23a.  Phases of u'(y), mode 8, 
evaluated together with amplitudes of 
Fig.22a.  First station (top) at n - 62 
(x=0.54 m). x-increments are 5 grid- 

lines (3 cm). Phase data are divided by 

■K. Vertical offset between successive 

baselines corresponds to phase/7r = 2. 
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Fig.22b.  Fourier amplitudes of u'[y) 
disturbance, mode 8.  First station 
(top) at n = S7 (x=0.69 m). x-increments 
are 5 gridlines (3 cm). Vertical off- 

set between successive baselines corre- 
sponds to u'/tfoo   =   0.2%. 

Fig.23b.  Phases of u'{y), mode 8, 
evaluated together with amplitudes of 
Fig.22b.  First station (top) at n = 87 
(x=0.69 m). x-increments are 5 grid- 
lines (3 cm). Phase data are divided by 
-. Vertical offset between successive 
baselines corresponds to phase/7r = 2. 
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Fig.24a.  Fourier amplitudes of u'(y) 
disturbance, mode 15.  First station 
(top) at n = 62 (x=0.54 m). x-increments 

are 5 gridlines (3 cm). Vertical offset 

between successive baselines corre- 

sponds to u'/Z7oo = 0.75 x 10~4. 

Fig.25a.  Phases of u'(y), mode 15, 
evaluated together with amplitudes of 
Fig.24a.  First station (top) at n = 62 
(x=0.54 m). x-increments are 5 grid- 

lines (3 cm).  Phase data are divided by 

7T. Vertical offset between successive 

baselines corresponds to phase/7r = 2. 
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Fig.24b.  Fourier amplitudes of u'(y) 
disturbance, mode 15.  First station 
(top) at n = §7 (x=0.69 m). x-increments 
are 5 gridlines (3 cm). Vertical offset 

between successive baselines corre- 

sponds to u'/Uoo = 0.25 x 10~3. 

Fig.25b. Phases of u'(y), mode 15, 
evaluated together with amplitudes of 
Fig.24b. First station (top) at n = 87 
(x=0.69 m). x-increments are 5 grid- 
lines (3 cm). Phase data are divided by 
-. Vertical offset between successive 
baselines corresponds to phase/7r = 2. 



74 

0.75   r 

0.65 

Ol 0 55 
>- 
ac 

- 0 45 
u. 
=3 
<X 
_1 

0. 35 
3E 
Q 
_1 
LL. 

_J 0. 25 
a: 
CD 

0.15 

0.05    - 

-0.05 
160 

Fig.26.  Disturbance velocity u'(x), total fluctuation. NX = 1 corre- 
sponds to x=0.16 m, ArA" = 160 corresponds to x=1.14 m.  First station 
(bottom) recorded at t = 1, increments are 32 timesteps.  1 period = 
256 timesteps. Vertical offset between successive baselines corresponds 
tou7t7oo=0.1 



75 

0.05 

O) 
ii 

<X 

0.00 

-0.05 

0.05 

160 

II 
x: 

3 

0.00 

-0.05 
160 

T=     1   TOTAL 

T=     1   M0DE1 

T= 33 TOTAL 

T= 33 M00E1 

0.05 

II 
3: 

Z3 

0.00 

-0.05 
40 80 

x/ox 

" 

 A     J 

1 
,     1 

120 160 

0.05 

05 
II 

a: 

0.00 

-0.05 
40 80 

X/DX 
120 160 

T= 65 TOTAL 

T= 65 M0OE1 

T= 97 TOTAL 

T= 97 M00E1 

Fig.27.  Disturbance velocity u'(x), total fluctuation vs. mode 1 fluctua- 
tion. 



76 

0.05 0.05 

ii 

<X 

0.00 

-0.05 
HO 80 

X/OX 
120 160 

II 

Z3 

0.00 

-0.05 
160 

T=129 TOTAL 

T=129 M00E1 

T=161 TOTAL 

T=161 M0DE1 

0.05   r 

en 
II 

<X 

0.00 

-0.05 

0.05 

120 160 

0.00 

-0.05 
160 

T=193   TOTAL 

T=193   M00E1 

T=225   TOTAL 

T=225   M0DE1 

Fig.27. continued 



77 

baseflow     +     wave trough     =     unstable profile 

Fig.28a. Superposition of steady baseflow and low mode wave 
trough to form a destabilizing velocity profile. 

baseflow      +      wave crest stable profile 

Fig.28b. Superposition of steady baseflow and low mode wave crest 
to form a stabilizing velocity profile. 
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Fig.29. Numerical simulation: Out- 
put/input ratio for three cases: 
Reference case (=Lauf 1), 
smaller amplitudes (=Small 2/3), 
higher amplitudes (=Big 4/3). 
Input amplitudes: u' at (m = 51, n = 
82) underneath rotor. Output ampli- 

tudes: u' at (m = 9,n = 122). 

LAUF 1 

SMRLL (2/3) 

BIG (4/3) 

Fig.30.  Experiment: Output/input ra- 

tio for two rod diameters: 0.48 cm ( + ) 
and 0.32 cm ( o ).  Input amplitudes: 
Normalized pressure p'/qo underneath 
rotor.  Output amplitudes: u'/Coo at 
0.91 m. 
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Fig.31. Time signal of forcing with 
modes 1 + 8 only, at n = 82 (x=0.66 m). 
Disturbance velocity u' plotted over 
two periods. m = 121 is at the freestream 
boundary, m = 51 is at about two 
boundary layer thicknesses. 
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Fig.32. Time signal u'(t) observed at 
n = 160 (x=1.14 m). near vertical loca- 
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Fig.33a.  Mode 1 profiles, superimposed 
on steady baseflow to form destabiliz- 
ing transient baseflow profiles. 

Fig.33b.  Mode 1 profiles, superim- 
posed on steady baseflow to form sta- 
bilizing transient baseflow profiles. 
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Fig.34. a,(x) for four cases, forcing 
with reference amplitudes: 
(1.)  Maximum amplification of a TS 
wave traveling in a wave trough, ac- 
cording to linear stability theory. 
(2.) Minimum amplification of a TS 
wave traveling in a wave crest, accord- 
ing to linear stability theory. 
(3.) Amplification of a TS wave in 
steady baseflow, according to linear 
stability theory. 
(4.) oti(x) computed from the Fourier 

amplitudes of Navier-Stokes simulation. 


